Mode-resolved dual-comb spectroscopy using error correction based on single optical intermedium
نویسندگان
چکیده
منابع مشابه
Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs
Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of ...
متن کاملOptical frequency comb spectroscopy.
Optical frequency combs offer enormous potential in the detection and control of atoms and molecules by combining their vast spectral coverage with the extremely high spectral resolution of each individual comb component. Sensitive and multiplexed trace gas detection via cavity-enhanced direct frequency comb spectroscopy has been demonstrated for various molecules and applications; however, pre...
متن کاملOn-chip dual-comb source for spectroscopy
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-c...
متن کاملMid-infrared dual-comb spectroscopy with an optical parametric oscillator.
We present the first implementation of mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Methane absorption spectroscopy was demonstrated with a resolution of 0.2 cm(-1) (5 GHz) at an acquisition time of ~10.4 ms over a spectral coverage at 2900-3050 cm(-1). The average power from each individual mid-infrared comb line was ~1 μW, representing a power level much greater ...
متن کاملAsynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy.
Two asynchronous, broadband 3.3 µm pulse trains with a stabilized repetition-rate difference of up to 5 kHz were generated using an ultrafast optical parametric oscillator. The two oscillation channels, each producing ~100 mW average power, ran essentially independently, and weak non-phase-matched sum-frequency mixing between them provided a timing signal that indicated when the asynchronous pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2021
ISSN: 1094-4087
DOI: 10.1364/oe.418099